module Stdlib.Data.List.Base; import Juvix.Builtin.V1.List open public; import Stdlib.Data.Fixity open; import Stdlib.Data.Bool.Base open; import Stdlib.Function open; import Stdlib.Data.Nat.Base open; import Stdlib.Data.Maybe.Base open; import Stdlib.Trait.Ord open; import Stdlib.Data.Pair.Base open; --- 𝒪(𝓃). Returns ;true; if the given --- object is in the ;List;. {-# specialize: [1] #-} elem {A} (eq : A → A → Bool) (s : A) : List A → Bool | nil := false | (x :: xs) := eq s x || elem eq s xs; --- Right-associative fold. {-# specialize: [1] #-} foldr {A B} (f : A → B → B) (z : B) : List A → B | nil := z | (h :: hs) := f h (foldr f z hs); syntax iterator rfor {init := 1; range := 1}; {-# specialize: [1] #-} rfor {A B} (f : B → A → B) (acc : B) : List A → B | nil := acc | (x :: xs) := f (rfor f acc xs) x; --- Left-associative and tail-recursive fold. {-# specialize: [1] #-} foldl {A B} (f : B → A → B) (z : B) : List A → B | nil := z | (h :: hs) := foldl f (f z h) hs; syntax iterator for {init := 1; range := 1}; {-# inline: 0 #-} for : {A B : Type} → (B → A → B) → B → List A → B := foldl; syntax iterator map {init := 0; range := 1}; --- 𝒪(𝓃). Maps a function over each element of a ;List;. {-# specialize: [1] #-} map {A B} (f : A → B) : List A → List B | nil := nil | (h :: hs) := f h :: map f hs; syntax iterator filter {init := 0; range := 1}; --- 𝒪(𝓃). Filters a ;List; according to a given predicate, i.e., --- keeps the elements for which the given predicate returns ;true;. {-# specialize: [1] #-} filter {A} (f : A → Bool) : List A → List A | nil := nil | (h :: hs) := ite (f h) (h :: filter f hs) (filter f hs); --- 𝒪(𝓃). Returns the length of the ;List;. length {A} (l : List A) : Nat := for (acc := zero) (_ in l) {suc acc}; --- 𝒪(𝓃). Returns the given ;List; in reverse order. reverse {A} (l : List A) : List A := for (acc := nil) (x in l) {x :: acc}; --- Returns a ;List; of length n where every element is the given value. replicate {A} : Nat → A → List A | zero _ := nil | (suc n) x := x :: replicate n x; --- Takes the first n elements of a ;List;. take {A} : Nat → List A → List A | (suc n) (x :: xs) := x :: take n xs | _ _ := nil; --- Drops the first n elements of a ;List;. drop {A} : Nat → List A → List A | (suc n) (x :: xs) := drop n xs | _ xs := xs; --- 𝒪(𝓃). splitAt n xs returns a tuple where first element is xs --- prefix of length n and second element is the remainder of the ;List;. splitAt {A} : Nat → List A → Pair (List A) (List A) | _ nil := nil, nil | zero xs := nil, xs | (suc zero) (x :: xs) := x :: nil, xs | (suc m) (x :: xs) := case splitAt m xs of l1, l2 := x :: l1, l2; --- 𝒪(𝓃 + 𝓂). Merges two lists according the given ordering. terminating merge {A} {{Ord A}} : List A → List A → List A | xs@(x :: xs') ys@(y :: ys') := if | isLT (Ord.cmp x y) := x :: merge xs' ys | else := y :: merge xs ys' | nil ys := ys | xs nil := xs; --- 𝒪(𝓃). Returns a tuple where the first component has the items that --- satisfy the predicate and the second component has the elements that don't. partition {A} (f : A → Bool) : List A → Pair (List A) (List A) | nil := nil, nil | (x :: xs) := case partition f xs of l1, l2 := ite (f x) (x :: l1, l2) (l1, x :: l2); syntax operator ++ cons; --- Concatenates two ;List;s. ++ : {A : Type} → List A → List A → List A | nil ys := ys | (x :: xs) ys := x :: xs ++ ys; --- 𝒪(𝓃). Append an element. snoc {A} (xs : List A) (x : A) : List A := xs ++ x :: nil; --- Concatenates a ;List; of ;List;s. flatten : {A : Type} → List (List A) → List A := foldl (++) nil; --- 𝒪(𝓃). Inserts the given element before every element in the given ;List;. prependToAll {A} (sep : A) : List A → List A | nil := nil | (x :: xs) := sep :: x :: prependToAll sep xs; --- 𝒪(𝓃). Inserts the given element inbetween every two elements in the given ;List;. intersperse {A} (sep : A) : List A → List A | nil := nil | (x :: xs) := x :: prependToAll sep xs; --- 𝒪(1). Drops the first element of a ;List;. tail {A} : List A → List A | (_ :: xs) := xs | nil := nil; head {A} (a : A) : List A -> A | (x :: _) := x | nil := a; syntax iterator any {init := 0; range := 1}; --- 𝒪(𝓃). Returns ;true; if at least one element of the ;List; satisfies the predicate. {-# specialize: [1] #-} any {A} (f : A → Bool) : List A → Bool | nil := false | (x :: xs) := ite (f x) true (any f xs); syntax iterator all {init := 0; range := 1}; --- 𝒪(𝓃). Returns ;true; if all elements of the ;List; satisfy the predicate. {-# specialize: [1] #-} all {A} (f : A -> Bool) : List A -> Bool | nil := true | (x :: xs) := ite (f x) (all f xs) false; --- 𝒪(1). Returns ;true; if the ;List; is empty. null {A} : List A → Bool | nil := true | _ := false; --- 𝒪(min(𝓂, 𝓃)). Returns a list containing the results of applying a function --- to each pair of elements from the input lists. {-# specialize: [1] #-} zipWith {A B C} (f : A -> B -> C) : List A -> List B -> List C | nil _ := nil | _ nil := nil | (x :: xs) (y :: ys) := f x y :: zipWith f xs ys; --- 𝒪(min(𝓂, 𝓃)). Returns a list of pairs formed from the input lists. zip {A B} : List A -> List B -> List (Pair A B) | nil _ := nil | _ nil := nil | (x :: xs) (y :: ys) := (x, y) :: zip xs ys; --- 𝒪(𝓃 log 𝓃). Sorts a list of elements in ascending order using the MergeSort --- algorithm. mergeSort {A} {{Ord A}} (l : List A) : List A := let terminating go : Nat -> List A -> List A | zero _ := nil | (suc zero) xs := xs | len xs := let len' : Nat := div len (suc (suc zero)); splitXs : Pair (List A) (List A) := splitAt len' xs; left : List A := fst splitXs; right : List A := snd splitXs; in merge (go len' left) (go (sub len len') right); in go (length l) l; --- On average 𝒪(𝓃 log 𝓃), worst case 𝒪(𝓃²). Sorts a list of elements in --- ascending order using the QuickSort algorithm. terminating quickSort {A} {{Ord A}} : List A → List A := let terminating go : List A → List A | nil := nil | xs@(_ :: nil) := xs | (x :: xs) := case partition (Ord.cmp x >> isGT) xs of l1, l2 := go l1 ++ x :: go l2; in go; --- 𝒪(𝓃) Filters out every ;nothing; from a ;List;. catMaybes {A} : List (Maybe A) -> List A | nil := nil | (just h :: hs) := h :: catMaybes hs | (nothing :: hs) := catMaybes hs; syntax iterator concatMap {init := 0; range := 1}; --- Applies a function to every item on a ;List; and concatenates the result. --- 𝒪(𝓃), where 𝓃 is the number of items in the resulting list. concatMap {A B} (f : A -> List B) : List A -> List B := map f >> flatten; --- 𝒪(𝓃 * 𝓂). Transposes a ;List; of ;List;s interpreted as a matrix. transpose {A} : List (List A) -> List (List A) | nil := nil | (xs :: nil) := map λ {x := x :: nil} xs | (xs :: xss) := zipWith (::) xs (transpose xss);Last modified on 2024-07-11 16:35 UTC